Co-Production of Activated Carbon and Bio-Oil from Agricultural Residues by Molten Salt Pyrolysis

نویسندگان

  • Ning Ai
  • Ganning Zeng
  • Hongyan Zhou
  • Yongtao He
چکیده

The feasibility of co-producing activated carbon and bio-oil from rice stalk through molten salt pyrolysis is reported in this work. The results indicated that: (1) mixed ZnCl2-KCl molten salt could considerably improve the solid and liquid yield as well as the ratio of H2 and CH4 selectively (compared to the traditional ZnCl2 method), (2) an increase of pyrolysis temperature had the same impact on the yield as mixed molten salt, except for a decrease of the liquid yield, which may have a negative effect on the adsorption ability of activated carbon, and (3) the adsorption capability of activated carbon varied significantly with the activation temperature and, to a lesser degree, with the pyrolysis temperature. The conclusion can be drawn that pyrolysis in molten salt is a potential technology for agricultural residue utilization because of its capability of co-production, especially in activated carbon and bio-oil.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Bio-Oil, Syn-Gas and Bio-Char from Switchgrass Pyrolysis at Various Temperatures

Pyrolitic conversion of lignocellulosic biomass, such as switchgrass and other agricultural residues, to bio-fuels is being considered for national energy security and for environmental advantages. Bio-oil, syngas and bio-char were produced and characterized from switchgrass at 400, 500 and 600 0C by pyrolysis. Bio-oil yield increased from 22 to 37%, syn-gas yield increased from 8 to 26%, and b...

متن کامل

Biofuel Production and Kinetics Study of Catalytic Microwave Pyrolysis of Douglas Fir Pellet over Activated Carbon Supported Metal Catalyst

The presented study aims to improve the quality of bio-oils by catalytic upgrading of pyrolysis bio-oil from microwave pyrolysis of biomass using transition metal modified activated carbon (AC) catalyst. A central composite experimental design (CCD) was used to optimize the reaction conditions for high quality bio-oil production. The effects of reaction temperature and reaction time on product ...

متن کامل

The Pyrolysis-Bioenergy-Biochar Pathway to Carbon-Negative Energy

Avoiding irreversible climate change requires >50% reduction in anthropogenic greenhouse gas (GHG) emissions by the year 2050 and the net removal of GHGs from the atmosphere by the end of the 21st century. This challenge is particularly daunting given that energy derived from fossil fuels is at the core of all modern economies and some sectors of the economy, such as transportation, will be alm...

متن کامل

Activation of Aspen Wood with Carbon Dioxide and Phosphoric Acid for Removal of Total Organic Carbon from Oil Sands Produced Water: Increasing the Yield with Bio-Oil Recycling

Several samples of activated carbon were prepared by physical (CO₂) and chemical (H₃PO₄) activation of aspen wood and tested for the adsorption of organic compounds from water generated during the recovery of bitumen using steam assisted gravity drainage. Total organic carbon removal by the carbon samples increased proportionally with total pore volume as determined from N₂ adsorption isotherms...

متن کامل

Enhancing biochar yield by co-pyrolysis of bio-oil with biomass: impacts of potassium hydroxide addition and air pretreatment prior to co-pyrolysis.

The influence of KOH addition and air pretreatment on co-pyrolysis (600 °C) of a mixture of bio-oil and biomass (aspen wood) was investigated with the goal of increasing biochar yield. The bio-oil was produced as a byproduct of the pyrolysis of biomass and recycled in subsequent runs. Co-pyrolysis of the biomass with the recycled bio-oil resulted in a 16% mass increase in produced biochar. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013